
Software Development and Trade¤

by

Larry D. Qiu
Hong Kong University of Science and Technology

This version: April 2001

Abstract

We develop a model to study the implications of a legal environment on software devel-
opment and international trade. We show that the degree of contract enforcement a®ects the
organizational mode (i.e., in-house versus outsourcing) of customized software development. In
autarky, a country with weak copyright protection develops customized software only, while a
country with strong copyright protection develops both customized software and packaged soft-
ware. After opening to trade, the strong-copyright-protecting country exports packaged software
and the weak-copyright-protecting country exports customized software.

General ¯eld: International Trade, Industrial Organization
JEL Classi¯cation No.: F12, L22, L86
Key Words: software, piracy, copyright protection, contract enforcement,

vertical integration, contract, pattern of trade.

|||||||{

* I have bene¯ted from comments by Leonard Cheng and Brian Copeland and discussions
with Son Ku Kim, Zhigang Tao, Susheng Wang, Oliver Williamson, and seminar participants at
HKUST, the \International Economics and Asia" Workshop held at the City University of Hong
Kong (July 2000), and the Second Annual Conference of the European Trade Study Group held
in Glasgow (September 2000).

Correspondence to: Department of Economics, Hong Kong University of Science and Tech-
nology, Clear Water Bay, Kowloon, Hong Kong. Fax number: +(852)2358-2084, Email: lar-
ryqiu@ust.hk, Web site: http://www.bm.ust.hk/~larryqiu.

\Industry representatives believe that the problem of copyright piracy is the number
one `trade' issue faced by the U.S. motion picture and software industries alike."

|{ Siwek and Furchtgott-Roth (1993, p. 60)

1. Introduction

We are now living in the new economy in which information technology is playing a more and

more important role. For example, in the United States, computer software is vital to both the

domestic economy and external trade. In 1998, the software industry became the second largest

industry group in manufacturing.1 In 1997, packaged software alone contributed a surplus of $13

billion to the U.S. trade balance, without which the U.S. trade de¯cit (excluding U.S. military

and government transactions) would have been 36% higher.2 However, software development

is very uneven across countries. In 1994, the U.S. controlled about 75% of the global software

market. Europe had 20% of the market, and Japan had 4.3%.3

Unlike most products and services, though, software is protected by copyright laws against

piracy.4 Software piracy is a serious problem all over the world, but it varies tremendously from

country to country. According to a report by the Business Software Alliance (BSA, 1999a), in

1998, 38% of the business software applications in the world were pirated,5 and, by countries,

the software piracy rate ranged from 25% (in the U.S.) to 97% (in Vietnam).6

It is not a coincidence that the U.S. has the lowest software piracy rate and at the same time

has the largest market share of software in the world. The BSA concludes that \[p]rotecting

the intellectual property rights that are the basis of packaged software distribution is conducive

1The software industry tied with the electronic components and accessories industry for second place,
after the motor vehicles and equipment industry, according to a report by the Business Software Alliance
(BSA, 1999b, p. 6).

2This information is obtained from BSA (1999b, p. 16).
3The market share ¯gures come from an estimation by International Data Corporation (Fortune,

1994).
4Besen and Raskind (1991) give a clear description of the American copyright law. Computer software

is protected by copyright law rather than by patent law. Patents protect the application of an idea in
the form of a machine, method, or matter. In contrast, copyright protects the expression of the idea.

5This was the ¯rst time that the annual piracy rate had dropped below 40% (BSA, 1999a).
6See BSA (1999a) for other countries' piracy rates.

1

to greater international trade and increased industry investment in the economies that provide

such protections" (BSA, 1998, p. 24). In this paper, we develop a model to analyze software

development and trade formally with a focus on the in°uence of a country's legal environment,

namely its contract enforcement and copyright protection policies.

Software products are commonly classi¯ed into two groups: packaged software, which is de-

signed for general purposes, like word processing, and customized software, which is designed for

special use, like an accounting program for a particular company.7 In our model, we show that

the degree of contract enforcement a®ects the organizational mode of the customized software

development, i.e., whether the software is developed in-house (vertical integration) or obtained

by outsourcing (contracting). For packaged software, since piracy reduces legitimate consump-

tion, copyright protection is essential to ensure investment in software development. As a result,

under autarky, a country with weak copyright protection develops customized software only,

while a country with strong copyright protection develops both customized and packaged soft-

ware. After opening to trade, software developers in both countries face the same world market

and consequently equal copyright protection, but the pattern of specialization and trade remains

as if they were still facing unequal copyright protection as under autarky: the strong-copyright-

protecting country exports packaged software, and the weak-copyright-protecting country ex-

ports customized software. This is because a strong copyright regime is a source of comparative

advantage while learning-by-doing and network externalities tend to reenforce this comparative

advantage.

Although this paper does not attempt to explain the whole story of software development

and trade, its prediction is in fact consistent with empirical observations. The U.S. is the

dominant developer and exporter of packaged software in the world. In 1993, the U.S. producers

of packaged software controlled about 60% of the world market (Siwek and Furchtgott-Roth,

1993, p. 60). It is also clear that the U.S. is far ahead of the EU and Japan in promoting legal

7Examples of packaged software (SIC 7372) include operating systems, word processing programs
and spreadsheets. Examples of customized software (SIC 7370, excluding 7372) include some speci¯c
software designed for banks and some professional training programs. See Torrisi (1998) for more about
this classi¯cation.

2

protection in software innovation.8 The U.S. extended copyright protection to software in 1980

(the Software Amendment is based on the U.S. Copyright Act enacted in 1976), but it was not

until 1991 that the European Commission ¯rst issued a directive concerning the application of

copyright to software.9

All other countries, including those in the EU, more or less concentrate on developing cus-

tomized software.10 For example, customized software sales accounted for 84% of total Japanese

software sales according to a 1990 survey by the MITI (Ministry of International Trade and

Industry).11 In-house development of customized software is popular. According to a survey

by MITI in 1988, 58% of software engineers in Japan worked for user companies (i.e., in-house

development), and 35% worked for software houses. Among the software companies in Japan,

user spin-o® software houses accounted for 31.3% of market sales (representing semi-in-house

development).12 Most software ¯rms in China13, India14 and Latin America are reported to

produce primarily customized software. As described by Zhang and Wang (1995, p. 66), in

China, \[m]ost of the local software companies were generally limited to developing software for

individual customers according to their speci¯cations, on a customer-by-customer basis. Con-

sequently, these software companies had hardly any market-oriented product of their own and

acted only as subcontractors."15 Although India has a large pool of highly skilled computer

programmers, the country does not develop a signi¯cant amount of packaged software,16 as pre-

dicted by our model, because its copyright protection is rather weak [the piracy rate was 65%

8This also leads Torrisi (1998, p. 156) to conclude that the di®erences in copyright protection, together
with some other factors, \explain why US ¯rms were the ¯rst to enter the market of packaged software,
pre-empting the entrance of European producers."

9See Torrisi (1998, p. 101) for more details.
10See Torrisi (1998, p. 156).
11See Baba et al. (1995, p. 478).
12See Baba et al. (1995).
13See Zhang and Wang (1995).
14See Correa (1996, p. 172).
15In China, \the ¯rst law to protect copyright, the `Copyright Law of the People's Republic of China,'

came into e®ect in June 1991. Due to the inadequate legal framework, it is understandable that the
software market simply was not ready to emerge in the 1980s." (Zhang and Wang, 1995, p. 43).
\With only a few software package products available in the market, most of the application systems

were either developed in-house or ordered from outside on an individual customer-design basis." (Zhang
and Wang, 1995, p. 48).
16See Arora and Asundi (1999) and Arora et al. (1999).

3

in 1998 according to BSA (1999a)]. With comparative advantage in this area, these countries

export customized software.17

The model developed in this paper has several distinguishing features that are crucial for

analyzing software development and trade. The industry is assumed to produce two distinct

products, and we examine the implications of contract enforcement and copyright protection

for these products, respectively. In this way, the present study is related to but signi¯cantly

di®erent from others in the literature that we discuss below.

First, consider customized software. There are three alternative modes through which a piece

of software is developed and later delivered to the user: vertical integration, a contract and the

market. To emphasize the di®erence between customized software and packaged software, we

assume that any customized software is so speci¯c that it has only one user. This immediately

eliminates the market as a plausible development and delivery mode. Therefore, our analysis

focuses on a comparison between vertical integration and contracts. Unlike us, in analyzing

upstream and downstream relationships, McLaren (1998) and Grossman and Helpman (1999)

take the incomplete contract approach and assume away contracts in their models. Naturally,

they do not touch on the issue of imperfect enforcement. Their focus is a comparison of vertical

integration with the market.18

In the present model, contracts are complete19 but enforcement is imperfect, similar to the

model proposed by Anderson and Young (2000).20 Unlike us, however, they consider contracts

on trade between two parties from di®erent countries and examine the implications of imperfect

enforcement for international trade. We examine whether contracts are preferred to vertical

17It is well recognized that India is the most successful developing country to export customized soft-
ware. According to a study cited by Correa (1996, p. 178), a substantial part of Indian software exports
(85 { 90%) is a type of \body-shopping", i.e., customized software. In China, \almost all the exported
software consists of customer-designed applications under one-time contracts" (Zhang and Wang, 1995,
p. 71).
18McLaren (1998) shows that there exist multiple equilibria about the production modes, but inter-

national openness makes the market (or outsourcing) more likely than vertical integration to be the
equilibrium. Grossman and Helpman (1999) characterize the general equilibrium of industrial organiza-
tion in the presence of downstream competition.
19See Tirole (1999) for an excellent review of the incomplete contract literature and the \debate"

between complete contract theorists and incomplete contract theorists.
20Recently, Zhang and Zhu (2000) showed that contracts can still be complete even if the court has

imperfect information to verify each contingency.

4

integration as an organizational mode for customized software development between two parties

within the same country.21

Second, the development of packaged software is similar to product innovation in that the

sunk R&D costs are high, the marginal costs of production are low, and the rents legally accru-

ing to the software developers or product innovators are easily appropriated without su±cient

copyright protection. However, software development still di®ers considerably from innovation

in many ways. For example, in product innovation, imitators are also producers who compete

against the innovator in the market. In contrast, software is copied by consumers.22 As a result,

the pricing strategy and equilibrium pro¯t of the product innovator could be very di®erent from

those of the software developer. In a recent study, Chen and Png (2000) examine how a software

publisher should optimally choose its price and degree of copyright enforcement. Our analysis

of packaged software di®ers from theirs in many aspects. In addition to pricing, we also consider

the race between competitors inherent in software development.23

Finally, the present study explores the implications of legal institutions on patterns of trade,

as opposed to almost all other studies in international trade literature, which are concerned

mainly with the e®ects of the di®erences in economic factors or trade policies on patterns of

trade.24

In short, the present model draws on two main building blocks: 1) the e®ects of contract

enforcement and legal protection on the organization of software production: and 2) the interplay

between international trade and institutions. It attempts to bridge the \industrial organization"

story with the \international trade" one by taking explicitly into account the importance of

\history": the country-speci¯c legal regime inherited from the past a®ects the dynamics of

21As discussed by Bolton and Whinston (1993), there are two important theories of vertical integration,
one based on incomplete contracts (or transaction costs) and the other on supply assurance. Williamson
(1971) is an example of the former theory, and Bolton and Whinston (1993) is an example of the latter.
In the business literature, Stuckey and White (1993) present an intensive discussion of when and when
not to integrate vertically. They point out that one important reason for vertical integration is that the
market is too risky and unreliable and contracts are too costly.
22Although selling counterfeit copies is commom in some Asian countries, it is rare in other areas,

especially in western countries.
23See Chen and Png's (2000) references for some papers in the economic literature on software.
24For example, the Ricardian model (considering productivity di®erences) and the Hechscher-Ohlin

model (considering factor endowment di®erences).

5

comparative advantages through the action of learning e®ects or network externalities.

The rest of the paper is organized as follows. The model for a single economy is set up in

Section 2. In Section 3, we analyze the customized software and packaged software to describe

the equilibrium under autarky. Section 4 analyzes the pattern of specialization and trade in

software. Concluding remarks are presented in Section 5.

2. Model of a Closed Economy

There are M computer programmers.25 The reservation wage is normalized to 1, which a

programmer can earn from a nonsoftware job. When engaging in software development, each

programmer has to expend additional e®ort, denoted e:

2.1. Customized Software

There are N ¯rms that are potential users of customized software. One piece of customized

software is designed speci¯cally for one ¯rm.26 Software i (i = 1; :::;N) can generate a value

equal to u for ¯rm i,27 but has no value for ¯rm j (6= i). This is assumed in order to capture
and emphasize the product speci¯city of customized software, as opposed to the generic nature

of packaged software.28 One programmer is needed to develop software i. We consider and

compare two organizational modes of obtaining software i. First, ¯rm i can hire a programmer

to develop it. This is referred to as in-house development or vertical integration. In this case, we

25For expositional ease, we simply assume that a programmer can do all the work required for software
development (system design, coding, testing, etc.).
26According to the de¯nition in a study by PricewaterhouseCoopers, customized software is written

to individual customers speci¯cations. In contrast, packaged software consists of all software written for
multiple customers and for all types of computer platforms.
27We can consider that ¯rm i earns a ¯xed amount of pro¯t in its industry, but if it uses software i,

its pro¯t will increase by u.
28Footnote 26 also provides a good justi¯cation for this assumption. In a model not speci¯c for software,

McLaren (1998) considers that upstream product i is useful to downstream ¯rms i and j (i 6= j). Grossman
and Helpman (1999) consider both cases in their model. Another implicit assumption in the present model
is that ¯rm i bene¯ts from using software i in the amount u, regardless of whether ¯rm j (i 6= j) is also
using software j. This can be easily justi¯ed if the ¯rms are in di®erent industries. This assumption is
also made by Bolton and Whinston (1993) and McLaren (1998) to avoid the strategic e®ect of upstream
behavior on downstream competition in order to focus on the upstream-downstream relationship.

6

call the ¯rm a v-¯rm. A v-¯rm's net value from software development is ¼v = u¡w¡ v; where
w is the wage paid to the programmer and v is the cost associated with vertical integration.29

Second, ¯rm i can o®er a contract to a programmer for developing software i: This is referred

to as outsourcing or as a contractual relationship. In this case, we call the ¯rm a c-¯rm. To

emphasize the role of contract enforcement, we consider the simplest contracting environment.30

Assume the programmer can either put in e®ort e to produce the software with value u or put

in zero e®ort to produce a software without any value. The c-¯rm can judge the quality of

the software. A contract speci¯es a payment, denoted c; from the c-¯rm to the programmer

after the delivery of the software with value u.31 Assume no renegotiation.32 Since payment is

required only after the programmer has invested the irreversible e®ort e to develop the software,

this contract inevitably leads to the hold-up problem. After the delivery of the software with

value u, the c-¯rm may take one of two actions. First, it may honor the contract by paying the

programmer the contracted amount c. Second, it may breach the contract by paying any amount

less than c. Following Anderson and Young (2000), we use a parameter ® 2 [0; 1] to capture
imperfect contract enforcement.33 That is, for any contract in default, there is probability ®

that the contract will be enforced by a court. When the court enforces a default contract, the

programmer receives c from the c-¯rm and the c-¯rm pays an additional penalty t > 0; which

may include both monetary and moral losses to the society at large. When a default contract is

not enforced by the court, the programmer receives nothing and the c-¯rm pays nothing. The

two parameters, ® and t, jointly represent the degree of contract enforcement, given which, a

29It has been well argued that vertical integration inevitably incurs many types of costs, such as
monitoring costs. See Williamson (1971) and Stuckey and White (1993) for some discussions.
30See Whang (1992) for a useful discussion of a typical contract for customized software development

based on his study of ¯ve real-world cases. We ignore those details, since our focus is not on optimal
contract design.
31There are various types of contracts in reality. As cited by Arora et al. (1999), ¯xed fee contracts

account for 58% of all contracts. Our contract is a ¯xed fee contract.
32We could have considered other types of contracts and allowed renegotiation. But this would signi¯-

cantly complicate the analysis, and the qualitative results obtained from our simple contract are unlikely
to change. See Whang (1992), Wang et al. (1997), and Png and Tao (2000) for some interesting analyses
of optimal (limited) contract design for customized software development.
33There are many reasons for enforcement imperfection. A technical reason is that the court is not

completely sure about the quality of the software. An incentive reason is that it is very costly to verify
the truth. In any case, we treat ® as exogenous in this paper, as in Anderson and Young (2000).

7

c-¯rm's (expected) net value is given by

¼c =

(
u¡ c; if it honors the contract,
u¡ ®(c+ t) if it breaches the contract.

(1)

Hence, in contrast to settings of incomplete contracting, complete contracts are possible in

the present model because of possible enforcement.34 We focus on complete contracts, since we

are concerned with the issue of legal enforcement and interested in examining its implications

for the equilibrium organizational mode of customized software development.

There is a third potential mode, in which ¯rm i buys software i from the market. This is

referred to as arm's length relationship or market. However, it is clear that this is not a viable

mode in the present setup, since no programmer will invest his/her e®ort to produce a very

speci¯c product without any certainty of getting a reward.35 This mode may be considered as

an extreme case of the contractual relationship, namely when contract enforcement is completely

absent (® = 0).

2.2. Packaged Software

There is only one software package and it has multiple potential users.36 Assume that the

potential users are evenly and continuously distributed in the interval [0; 1] in such a way that

users with higher i derive lower utilities from using the software. Let v(i) denote user i's utility

level when the software's quality is equal to unity. Then v0(i) < 0. Furthermore, assume that

v(1) = 0; v00(i) < 0; and if the packaged software's quality is q, then user i's utility is v(i)q.

A software developer (SD in short) hires programmers to develop packaged software.37 The

quality of the software is an increasing function of the number of programmers, denoted x; hired

by the SD. For convenience, we treat x as a continuous variable. Assume the following properties

34Here we rely on legal enforcement to combat the holdup problem. In contrast, Klein et al. (1978)
emphasize long-term contracts as the market enforcement mechanism.
35Both McLaren (1998) and Grossman and Helpman (1999) consider the cases where the product is

not too speci¯c to be sold on the market.
36The argument can be easily generalized to any ¯xed number of di®erent software packages.
37We ignore the possibility of contracting for packaged software development. This is justi¯ed by the

fact that many programmers are needed to design the software and it is di±cult to organize them in
decision making.

8

for the quality function: q(x) ¸ 0; q0(x) > 0; and q00(x) < 0: Without loss of generality (and

realism), we can assume that the marginal cost of production (after the ¯rst copy) is zero.

There is free entry to software development. However, because of copyright protection, the

SD that is the ¯rst to develop successful software gets the monopoly rights. Hence, we can

view software development as a racing game and refer to the winner as the publisher. When

an SD enters, it incurs two types of irreversible investment costs. First, it needs to spend a

¯xed amount on physical capital, such as computer hardware.38 This cost is assumed equal to

f . Second, it needs to pay the programmers for developing the software. Software development

and production exhibits very strong increasing returns to scale.

2.3. Sequence of Moves

There are three stages. At the ¯rst stage, each of the N ¯rms determines its organizational

mode of customized software development. All SDs determine whether to enter the race to

develop packaged software. At the second stage, each c-¯rm sets the terms of its contract and

o®ers it to a programmer, each v-¯rm hires a programme, and each SD hires a desired number

of programmers. At the ¯nal stage, each of the N ¯rms receives its customized software. The

publisher sets the price for its packaged software and sells it in the market. All parties are

assumed to be risk neutral.

3. Analysis of a Closed Economy

In this section we consider a single economy to derive the equilibrium prior to international

trade. Speci¯cally, in Sections 3.1 and 3.2 we analyze the partial equilibrium by treating the

wage rate of the programmers as given. Then, in Section 3.3, we derive the general equilibrium

when the wage rate clears the labor (programmer) market and free entry leads to zero expected

pro¯t for the SDs.

3.1. Customized Software

38For more discussion on this type of costs see Siwek and Furchtgott-Roth (1993) and Torrisi (1998).

9

Since the N ¯rms are not related in any respect except that they rely on the same labor pool

to develop software, we can analyze each ¯rm's decision independently for any given w ¸ w0,
where w0 ´ 1 + e. As all ¯rms are identical, we need to focus on just one ¯rm.

A. Contracts.

It is useful to de¯ne three critical values that are important in determining whether a contract

will be honored or breached:

m+ ´ ®t=(1¡ ®); m¡ ´ u=®¡ t; and m0 ´ u=(u+ t):

Note that an increase in m+; or a decrease in m¡; implies that contract enforcement gets

stronger. Moreover, the following three conditions are equivalent: m+ ¸ u; m¡ · u; and

® ¸ m0; all indicating stronger enforcement.
We call a contract a type-H contract (H stands for honor) if it will be honored by the c-¯rm,

and a contract a type-B contract (B stands for breach) if it will be breached by the c-¯rm. The

¯rm never chooses outsourcing unless ¼c ¸ 0, which holds if c · u for a type-H contract, and if
c · m¡ for a type-B contract. Suppose ¼c ¸ 0 in the following analysis.

Equation (1) immediately implies that the c-¯rm prefers honoring the contract to breaching

the contract if and only if c · m+: As a result: (i) if ® ¸ m0, then the c-¯rm always honors the

contract, and (ii) if ® < m0, then the c-¯rm honors the contract when c · m+ and breaches it
whenm+ < c < m¡.39 Hence, a programmer can correctly predict whether or not a contract will

be honored. The next question is whether the c-¯rm should o®er a type-H or type-B contract

and how to determine the contract term c. On the one hand, the c-¯rm should set c as low as

possible so long as the contract is acceptable to a programmer. On the other hand, in order to

induce a programmer to accept the contract, the c-¯rm has to make it at least as attractive as

the programmer's outside option, i.e., receiving w for being hired by a v-¯rm or an SD. Note

that by accepting the c-¯rm's contract, the programmer's expected net return is c ¡ e for a
type-H contract, but ®c ¡ e for a type-B contract. Hence, the optimal term is c = w for a

type-H contract (provided w · u) and c = w=® for a type-B contract (provided w · u¡ ®t).
39Since u < m¡, it is not possible for c ¸m¡:

10

When it is certain or almost certain that a contract will be breached (® = 0 or ® ¼ 0), no
programmer will accept the contract. To see this, note that in this case both the price of the

contract (w=®) and the penalty in the case of contract enforcement [(w=®) + t] are in¯nitely

large, which becomes unrealistic. Accordingly, we rule out this possibility by assuming that

there exists ®min > 0 such that no contract can be made for ® < ®min.
40

Lemma 1 below describes the optimal contract at a given wage rate.

Lemma 1: Suppose w 2 [w0; u). Then for any given ® ¸ ®min and t;
(i) if ® ¸ m0, then the c-¯rm o®ers a type-H contract with c = w;

(ii) if ® < m0; then the c-¯rm o®ers a type-H contract with c = w for w · m+; it o®ers no

contract for w >maxfm+, ®m¡g, and it o®ers a type-B contract with c = w=® if and only if

m+ < ®m¡ and w 2 (m+; ®m¡].
Proof: See the Appendix.

The intuition behind the above results is easy to understand by noting that the conditions

indicate various degrees of contract enforcement. There are three messages contained in Lemma

1. First, an increase in ® raises the occurrence of type-H contracts and reduces that of breach

contracts or no contract. Second, in the case of weak contract enforcement (® < m0); as the

wage increases, the optimal contract switches from type-H to type-B and then to no contract.

Finally, and most importantly, although imperfect contract enforcement may tempt the c-¯rm to

breach its contract, this may actually hurt the ¯rm. To see this, note that since the programmer

has an outside option and can infer the type of the contract, he discounts the value of any type-B

contract. As a result, if the c-¯rm is to o®er a type-B contract, c must be su±ciently attractive,

equal to w=® as opposed to w for a type-H contract.41 Consequently, a type-B contract results

in the expected value ¼cb ´ u¡ w ¡ ®t, lower than ¼ch ´ u¡ w; which is the value of a type-H
contract. When enforcement is weak (i.e., ® < m0) and w 2 (m+; ®m¡]; should the c-¯rm have

40In fact, we can justify this by imposing a budget constraint for the c-¯rm, say c + t · B, which,
on assuming B to be su±ciently large, means that the contract is possible only if ® ¸ ®min(w); where
®min(w) ´ w=(B ¡ t) < 1: In this paper, we choose a ¯xed ®min, which is independent of w and t, to
have a clearer exposition. This simpli¯cation does not a®ect the qualitative results in any respect.
41This result, due to legal risk, is consistent with that observed by Whang (1992, p. 310) in contracts

subject to technical and ¯nancial risks. Whang points out that in anticipation of the risks, the developer
will demand a high premium for the contract for compensation.

11

been able to commit not to breach the contract, it would have been able to make a type-H

contract and so obtain ¼ch: However, without the ability to commit, the c-¯rm is forced to o®er

a type-B contract [Lemma 1(ii)]. This is the negative externality existing in the environment

with weak contract enforcement.

B. Optimal Mode of Organization.

If the ¯rm chooses in-house development, then given w 2 [w0; u¡ v], it hires a programmer
and receives ¼v. Comparing ¼v to ¼c, we immediately obtain Lemma 2, which describes the

optimal choice of organizational mode.

Lemma 2: Suppose w < u¡v. A ¯rm chooses vertical integration if and only if (i) ® < ®min,
or (ii) ® 2 [®min;m0) and w > maxfm+; ®m¡g; or (iii) ® 2 [®min;m0), m+ < ®m¡; w 2 (m+;
®m¡] and v < ®t:

Lemma 2 says that for vertical integration to dominate contracts, at least one of the following

conditions must be satis¯ed: contract enforcement is weak; the wage rate is high; and the cost

of vertical integration is low. We could also state Lemma 2 in a di®erent way: contracts are

preferred to vertical integration when enforcement is very strong (more precisely, ® ¸ m0), or
when it is not so strong but the wage rate is low (w 2 [w0;m+]).

Because of the extra cost associated with vertical integration, contracts are more e±cient.

However, contracts are not always adopted due to imperfect enforcement, which actually imposes

a cost on contracting. This cost does not exist for type-H contracts. As indicated by Lemmas

1 and 2, whenever a type-H contract dominates, vertical integration is never optimal.42

C. Contract Enforcement and Optimal Mode of Organization.

To analyze fully the e®ects of contract enforcement, we ¯rst depict recurring Lemmas 1 and

2 graphically in Figure 1. We measure ® using the horizontal axis, v using the left-hand-side

42Lemma 2 also predicts that vertical integration and contracts may coexist only in a very special case,
viz., when v = ®t. We have two remarks about this. First, Grossman and Helpman (1999) also ¯nd
that in their model outsourcing (via the market) and vertical integration coexist only in a very special
case. Second, in the present model, it is not di±cult to see that if v or u is not homogeneous across the
¯rms, then in many cases vertical integration and contracts coexist: vertical integration for some ¯rms
and contracts for the others.

12

vertical axis, and w using the right-hand-side vertical axis. We focus on v 2 (0; t]; since when
v > t, contracts always dominate vertical integration regardless of the level of ® (provided

® ¸ ®min). The curves m+(®) and ®m¡(®) are plotted against the right vertical axis, while the
straight line ®t is plotted against the left vertical axis. Two critical points are automatically

de¯ned: ®1 ´ v=t, at which the two straight lines v and ®t intersect, and ®2 ´ w=(w + t), at
which the two curves w and m+(®) intersect. Using Lemmas 1 and 2, we observe that as a

result of enhancing contract enforcement, the optimal mode of organization changes following

a pattern: vertical integration (when ® < ®min) =) type-B contract (when ® 2 [®min; ®1])
=) vertical integration (when ® 2 (®1; ®2)) =) type-H contract (when ® ¸ ®2). Although

this pattern is observed here for the special case drawn in Figure 1, it is general, as shown by

Proposition 1 below.

<Figure 1 here>

Proposition 1: Given v · t and w 2 [w0; u ¡ v), there exist unique ®1 and ®2 such that
the optimal mode of organization for customized software development is vertical integration

when ® 2 [0; ®min); a type-B contract when ® 2 [®min; minf®1; ®2g], vertical integration when
® 2 (minf®1; ®2g; ®2), and a type-H contract when ® 2 [®2; 1].
Proof: See the Appendix.

It is possible that ®1 < ®min; in which case [®min; ®1] = ;, i.e., there exists no type-B contract
for all levels of ®. It is also possible that ®1 ¸ ®2, in which case (minf®1; ®2g; ®2) = ;, i.e., there
is no vertical integration for intermediate values of ®. But in any case, the optimal mode of

organization is always vertical integration for su±ciently small ® (· ®min) and always a type-H
contract for su±ciently large ® (® ¸ ®2): One may ask why, as ® decreases, the optimal mode
switches from vertical integration to a type-B contract. The reason is that as ® decreases, the

cost associated with vertical integration (v) becomes higher than the cost associated with a

type-B contract (®t).

Given Proposition 1, we can easily examine the e®ects of changing v and w on the optimal

mode of organization. From Figure 1, an increase in v shifts ®1 to the right. As a result,

the range of ® for a type-B contract expands and that for vertical integration shrinks. As

13

v continues to increase, the interval for vertical integration (®1; ®2) eventually vanishes. The

intuition is quite clear: an increase in the cost of vertical integration makes vertical integration

less attractive.

An increase in w shifts ®2 to the right in Figure 1. This reduces the range of ® for type-H

contracts, to the bene¯t of vertical integration. To understand this, simply consider the point

at ® = ®2. An increase in w reverses the inequality w · m+ at this point and so the c-¯rm

can no longer commit to a type-H contract. As explained before (after Lemma 1), the negative

externality forces the c-¯rm to o®er a type-B contract or no contract, reducing the c-¯rm's value.

Thus, at ® = ®2, the optimal choice switches from a type-H contract to vertical integration as

a result of wage increases.

From the above analysis, we summarize how the optimal mode of organization responds to

changes in the cost of vertical integration and wage rates.

Corollary 1: Suppose v · t and w 2 [w0; u). An increase in v reduces the case for vertical
integration and raises the case for type-B contracts. An increase in w reduces the case for type-H

contracts and raises the case for vertical integration or type-B contracts.

Proof: See the Appendix.

3.2. Packaged Software

We now analyze the second-stage competition among the SDs and the third-stage decision

of the publisher. The analysis of entry at the ¯rst stage is postponed to Section 3.3.

A. User's Behavior and Demand.

Due to piracy, demand for packaged software is very di®erent from demand for ordinary

commodities. Suppose the packaged software's quality is q and the price is p. Then, if a

potential user i buys the software, he will receive a net bene¯t equal to v(i)q¡ p. However, the
software can be copied at zero cost. When using the pirated software, the probability of being

caught is ¹ 2 (0; 1) and the penalty is equal to p.43 Hence, the net expected bene¯t to user

43According to Gilman (1992), the Software Publishers Association (SPA) conducts audits, and if illegal
software is found, then it \charges a ¯ne equal to the price of the product and then destroys the copy."

14

i who uses the pirated software is (1 ¡ ¹)v(i)q ¡ ¹p.44 Government agents are responsible for
detecting piracy and collecting the ¯nes, which become part of the government's revenue. A

person's gross and net bene¯t is zero if he does not use the software.45 The degree of copyright

protection is fully captured by the magnitude of ¹: It is clear that in addition to its generic use,

piracy is another distinguishing feature of packaged software, as opposed to customized software.

We are now ready to examine the users' decisions on buying, copying and not using packaged

software. The decision is a®ected by the price-adjusted value v(i)q=p and copyright protection

¹. First, for user i, buying is preferred to copying if and only if

v(i)q=p ¸ (1¡ ¹)=¹: (2)

Second, buying is preferred to not using if and only if v(i)q=p ¸ 1. Finally, copying is preferred
to not using if and only if

v(i)q=p ¸ ¹=(1¡ ¹): (3)

Combining (2) and (3) yields a necessary condition for the existence of copying: ¹ < 1
2 : Lemma

3 below gives the conditions under which copying exists.

Lemma 3: There is no copying if ¹ ¸ 1
2 . Copying occurs if and only if ¹ <

1
2 and there exists

some i such that the price-adjusted value satis¯es condition (3).

When ¹ ¸ 1
2 ; a further increase in ¹ will not have any e®ect on the users' behavior. Without

loss of generality, in the rest of the paper, we con¯ne the analysis to ¹ · 1
2 , letting ¹ =

1
2 capture

the case for all ¹ ¸ 1
2 .
46 We ¯rst consider demand for legitimate software at any given ¹ · 1

2

Alternatively, we could have considered a more general case where the ¯ne may be di®erent from the
price, in which case the combination of ¹ and the ¯ne would represent the degree of copyright protection.
44Therefore, as in Chen and Png (2000), we implicitly assume that the user is caught when he is making

the copy and before he actually uses it. That is, he has not been able to derive any utility yet.
45Recently, Bakos et al. (1999) studied the interesting phenomenon of software sharing and its impact

on the publisher's pro¯t. We do not allow legal sharing in the present model.
46This critical point, 12 ; of course depends on many factors, including risk neutrality, equal quality of

legitimate software and pirated software and the magnitude of the ¯nes. However, the present study does
not emphasize the numerical value of this point, but only its existence. The qualitative results do not
depend on whether this value is 12 or

3
4 :

15

and q. Let Q 2 (0; 1) denote the marginal user who is indi®erent between buying and copying
the software, i.e., v(Q)q=p = (1¡¹)=¹, which de¯nes the demand function Q(p; q; ¹): Users with
i · Q purchase the software, and others either copy or do not use it. Using this de¯nition and
the properties of the value function v(i), we can derive the properties of the demand function:47

@Q=@p < 0; @Q=@q > 0; and @Q=@¹ > 0:

We now turn to copying. Let Qc 2 [0; 1] denote the marginal user who is indi®erent between
copying and not using the software, i.e., v(Qc) = ¹=(1 ¡ ¹); by (3), which de¯nes a function
Qc(p; q; ¹) with the following properties: @Qc=@p < 0; @Qc=@q > 0 and @Qc=@¹ < 0: Recall

from (2) and (3) that users with the price-adjusted values greater than or equal to ¹=(1 ¡ ¹)
but less than (1¡ ¹)=¹ will use pirated software. Hence, users i 2 (Q;Qc] use pirated software:
People with i > Qc do not use the software (legitimate or pirated). Figure 2 summarizes the

above analysis.

<Figure 2 here>

B. Software Developers' Decision on Quality and Price.

Suppose K SDs have entered the packaged software development race at the ¯rst stage. We

shall work backward by ¯rst looking at the third-stage pricing decision. Since the publisher

has a monopoly in the market, it faces the demand Q(p; q(x); ¹), supposing its second-stage

hiring decision is x. Thus, the publisher's operating pro¯t at the third stage is Q(p; q(x); ¹)p: It

chooses the price level p¤(x;w;K; ¹) to maximize this pro¯t. At stage two, given wage rate w

and number of entrants K, each competing SD chooses its hiring level x¤(w;K; ¹) to maximize

its expected pro¯t. Since all SDs are identical, we assume that nature randomly determines

the winner, and hence the probability of winning by each SD is equal to 1=K.48 As a result,

each SD's expected pro¯t at the second stage is given by Q(p¤; q(x); ¹)p¤=K ¡wx: Because the
publisher has a monopoly, it is easy to see that the above sequential decisions are equivalent to

47For more about other properties of the demand, see (A0) in the Appendix.
48In order to focus on the market outcome, we here ignore the details of the racing game by making

the assumption on the end result of the game. There is a rich literature on innovation racing games. See
Reinganum (1989) for a survey of the early models. The result that the probability of winning by each
competitor falls as the number of competitors rises is common in various models of the literature.

16

a simultaneous decision on x and p, which is obtained from the following maximization problem:

max
(p;x)

¼(p; x;w;K; ¹) ´ Q(p; q(x); ¹)p=K ¡wx: (4)

There is a unique interior solution (see proof of Proposition 2 in the Appendix), denoted

x¤(w;K; ¹) and p¤(w;K;¹); that satis¯es the following ¯rst-order conditions:

¼x = Qqq
0(x¤)p¤=K ¡w = 0;

¼p = [Qpp
¤ +Q(p¤; q(x¤); ¹)]=K = 0;

(5)

where and hereafter the subscripts of Q represent derivatives with respect to the corresponding

variables. Note that the wage rate a®ects the equilibrium consumption through quality and

price:

@Q¤=@w = Qqq0(x¤)(@x¤=@w) +Qp(@p¤=@w): (6)

Proposition 2: Given ¹ and K, an increase in wage rate (i) reduces employment in the packaged

software development, (ii) reduces the packaged software's quality, and (iii) lowers the packaged

software's price. However, the ¯nal consumption for legitimate packaged software increases (is

unchanged, decreases) if the quality is higher than (equal to, lower than) unity. More precisely,

@x¤

@w
< 0;

@q¤

@w
< 0;

@p¤

@w
< 0; and

@Q¤

@w

8><>:
< 0 if q¤ < 1;
= 0 if q¤ = 1;
> 0 if q¤ > 1:

(7)

Proof: See the Appendix.

The ¯rst three results of the proposition are easy to understand. As the cost of hiring

programmers rises, each SD has to reduce its employment (x¤). As a result, the quality of

the software decreases. Lower quality also results in lower demand for the product, and so the

publisher's optimal price is reduced accordingly. However, the e®ect on consumption Q¤ is less

clear cut. There are two competing forces as shown in (6) where the ¯rst term is negative and

the second term is positive. On the one hand, for the same price level, lower quality reduces

demand and so causes Q¤ to decrease (to shift to the left in Figure 2). On the other hand, for a

given quality, the lower price generates higher demand and so causes Q¤ to increase (to shift to

the right in Figure 2). This result is interesting in that it conveys a message that better quality

17

software may or may not be more popular. Since the publisher charges a higher price for high-

quality software than for low-quality software, the resulting consumption for the high-quality

software may end up lower than that for the low-quality software. The proposition shows that

whether Q¤ increases or decreases depends on the level of the quality in equilibrium.

3.3. Equilibrium

In this subsection, we ¯rst derive the equilibrium w for any given K and then analyze the

¯rst-stage equilibrium entry K:

A. Equilibrium Wage Rate w¤:

It is realistic to assume and also more interesting to focus on the case where M > N .

Programmers can move freely among three di®erent jobs: being employed by the SDs, being

employed by the v-¯rms, or entering into contracts with the c-¯rms. Let us ¯rst examine the

demand for programmers in customized software development. So long asw < u, all ¯rms strictly

bene¯t from using their respective customized software, regardless of the modes of organization

adopted. Therefore, demand for programmers is equal to N . At w = u, since the only viable

mode of organization is a type-H contract and the ¯rms are indi®erent between using and not

using customized software, demand for programmers is between 0 and N . Obviously, there is no

demand for programmers when w > u. Such a demand curve (formed by three straight lines) is

depicted on the left panel of Figure 3.

<Figure 3 here>

We now examine the packaged software development and depict the results in the right

panel of Figure 3. First, we derive the supply curve S. The supply of programmers is zero for

wage rates below w0. At w = w0; the maximum number of programmers left over for packaged

software is equal toM ¡N . Since the programmers are indi®erent between being employed and
not at this wage rate, the supply is between 0 and M ¡N . For w0 < w < u, all programmers
want to be employed and so the supply is equal to the number of programmers left over from

18

customized software, i.e., M ¡N . At w = u; the supply is between M ¡N and M . For w > u,

the supply equals M:

Second, we turn to the demand for programmers by all SDs. Given K, the total demand,

denotedD(w;K;¹); is equal toKx¤(w;K; ¹), which is decreasing in w, as shown by (7). Without

more speci¯cations of the model, we cannot exactly pin down the position of the demand curve

in Figure 3. However, we can draw ¯ve possible representative demand curves, labeled Di; i =

0; :::; 4: When demand is very low (D0); we have x
¤ = 0 for w ¸ w0: In this case, packaged

software does not exist in the economy. The equilibrium wage rate, denoted w¤, is totally

determined by customized software and so w¤ = w0. At a higher level of demand (D1), packaged

software emerges, but since demand is not su±ciently strong, the wage rate remains the same

and employment in customized software and in packaged software development are N and M1,

respectively. As demand continues to increase, the wage rate eventually starts to rise, and it

continues to rise (e.g., w¤ = w2 when demand is captured byD2) until it is equal to u:Within this

range of demand, w¤ 2 [w0; u] and employment in customized software and in packaged software
are N and M ¡ N , respectively. As demand becomes higher, at D3, we have w¤ = u and

employment in the packaged software development reaches M3, leaving the remaining M ¡M3

for customized software. As demand increases further, the equilibrium wage rate remains equal

to u before the employment in packaged software absorbs all M programmers. After this point,

the wage rate has to go up, since the labor supply has reached its maximum. At a demand level

such as D4; the equilibrium wage (w¤ = w4) is totally determined by packaged software, and

customized software does not exist.

The above graphical analysis clearly indicates the importance of demand D(w;K;¹) in af-

fecting the equilibrium wage rate and employment. We next show how copyright protection

a®ects such demand.

Let us ¯rst examine how a change in K a®ects the equilibrium wage rate by focusing on the

most interesting case in which demand D2 intersects the vertical segment of the supply curve,

S = M ¡N , at w2: The labor market is in equilibrium when the labor demand by the SDs is

equal to the net labor supply,49 i.e.,

49Most of the literature on imperfect competition has a partial equilibrium nature with regard to factor

19

Kx¤(w;K; ¹) =M ¡N; (8)

which determines the equilibrium wage rate as a function of K and ¹: w¤(K;¹): If D(w;K;¹)

shifts upwards (downwards) as K increases, the wage rate will strictly increase (decrease). How-

ever, an increase in K has two opposing e®ects. On the one hand, given each SD's hiring, the

demand increases, since there are more SDs to hire programmers. On the other hand, each

SD cuts back its hiring, since the expected marginal return is lowered due to the probability of

winning becoming lower. It turns out that the e®ect that dominates depends on the curvature

of the quality function q(x). In Lemma 4 below, we show that as a result of K increasing, the

wage rate will also increase if the quality function is su±ciently concave (i.e., q00 is very small),

but will decrease if the quality function is not su±ciently concave. The basic reason is that when

the quality function is very concave, reducing x¤ (the latter e®ect just mentioned) will lead to a

big deterioration in quality. Because of this, each SD is more reluctant to reduce its hiring than

otherwise. As a result, the latter e®ect is small, giving rise to an increase in total demand.

Lemma 4: Suppose the equilibrium wage rate is within (w0; u): Then, as a result of more SDs

entering packaged software development, the equilibrium wage rate of the computer programmers

increases if and only if the quality function is su±ciently concave. More precisely,

@w¤

@K

(
> 0 if xq00 + q0 < 0;
< 0 if xq00 + q0 > 0:

Proof: See the Appendix.

Let us brie°y consider all other possible demand curves. It is very clear that given a small

change in K, the equilibrium wage rate will not change when demand is at a level like D0, D1;

or D3: For very high demand like D4; the labor market equilibrium condition is the same as

(8) except the right-hand side is equal to M . Nevertheless, the analysis for case D2 completely

applies here, and so Lemma 4 holds for this case.

prices. Dixit and Grossman (1986) and Helpman and Krugman (1985, pp. 88 { 95) are two exceptions.
Similar to these two, the present paper has a general equilibrium framework.

20

B. Equilibrium Entry K¤.

Previous analysis has shown that given K, we can derive the equilibria w¤, x¤; and p¤. Using

the equilibrium values in ¼ given in (4), we obtain the expected pro¯t as a function of K and

¹: ¼¤(K;¹): Note from (4) that K a®ects the expected revenue directly and the cost indirectly

through its e®ect on wage rates. The direct e®ect is clearly negative. However, the indirect

e®ect is ambiguous. Nevertheless, we can show that the direct e®ect dominates the indirect

e®ect and, as a result (see the Appendix for a proof),50

@¼¤(K;¹)=@K < 0: (9)

Next, we hold K ¯xed to examine the partial e®ect of changing ¹ on ¼¤: On the one hand, an

increase in ¹ results in higher demand for packaged software, and so the expected pro¯t is also

higher. On the other hand, this higher demand for the software translates to higher demand for

programmers. Wage rates may or may not rise, depending on the actual position of D. In any

case, this wage e®ect is secondary, and we can show (see the Appendix for a proof) that

@¼¤(K;¹)=@¹ > 0: (10)

We are now ready to analyze each SD's entry decision. Given ¹, because of the monotonicity

property (9), there exists an entry if and only if ¼¤(1; ¹) ¡ f ¸ 0: The equilibrium number

of entrants, denoted K¤(¹), is determined by the free-entry (zero expected pro¯t) condition:

¼¤(K¤; ¹)¡ f = 0: Total di®erentiation, together with inequalities (9) and (10), yields

dK¤=d¹ = [@¼¤(K;¹)=@¹]= [¡@¼¤(K;¹)=@K] > 0:

With the above analysis, we can derive the equilibrium condition of copyright protection

for the existence of packaged software in an economy. Denote f ´ ¼¤(1; 12); and assume that

50This result is robust to a more general labor market in which labor supply increases as wages rise.
Although, as shown in Lemma 4, wages may go down as K increases due to total labor demand reduction,
if labor supply is not constant, the resulting reduction in the wage rate will be smaller. Hence the indirect
e®ect becomes less important, reinforcing the inequality of (9).

21

f < f . That is, the ¯xed cost is not too large to deter entry when copyright protection is very

strong.

Proposition 3: Suppose f < f . Then there exists a unique ¹0 2 (0; 12) such that a country
produces packaged software if and only if ¹ ¸ ¹0:
Proof: See the Appendix.

The intuition behind the above result is very simple. Without su±cient copyright protection,

demand for packaged software is not guaranteed, and so no one will pay the ¯xed entry cost to

enter the nonprotected industry. Although there are increasing returns to scale, weak copyright

protection limits the scale and thus discourages entry.

4. Free Trade

Consider two countries, A and B, that are identical except that B has stronger copyright

protection than A. Let ¹A and ¹B represent A and B's copyright protection, respectively. To

have a sharper focus, assume ¹A < ¹0 < ¹B. Therefore, in autarky, B produces packaged

software, but A does not.

There are N (new) ¯rms in each country demanding various types of customized software

to increase their respective pro¯ts, and there is one potential (new) software package to be

developed by SDs in any country.51 Free trade brings in two new issues. First, customized

software that is developed via a contract is internationally tradable. A ¯rm in a country may

o®er a contract to a programmer in another country for development and delivery of the required

software. Second, a country's copyright law protects the packaged software regardless of its

country of origin according to WTO's two principles, namely the most-favored-nation treatment

and national treatment. Thus, all SDs in both countries join the packaged software development

race. The ¯rst one to develop the successful software becomes the publisher, who will register in

both countries and receive protection (monopoly power) in both markets. As a result, all SDs

face the same degree of copyright protection in both markets. Will this eliminate the comparative

advantage enjoyed by the SDs in B? Which country will develop and export packaged software?

51Simply suppose the software that has been developed by B's publisher in autarky is a word processor
(say, Word), and now the new software package is a spreadsheet (say, Excel).

22

We shall analyze packaged software ¯rst. Suppose that the numbers of SDs entering at

the ¯rst stage are KA in A and KB in B. Let ½ 2 (0; 1) denote the probability of winning
the software development race by each SD in A. There are three types of SDs in B: (i) the

existing publisher of the old packaged software under autarky, referred to as publisher O, (ii)

those SDs that participated in the old packaged software development race under autarky but

failed to become the publisher, referred to as OSDs, and (iii) the new SDs who did not enter

under autarky, referred to as NSDs. The NSDs are the same as those SDs in A, and so each

one's the probability of winning the software development race is also ½. However, the OSDs

have accumulated additional knowledge in developing packaged software through learning-by-

doing. Alternatively, we can consider the existence of network externalities.52 But for brevity,

we con¯ne to the learning e®ects. Accordingly, assume that the probability of winning by each

OSD is £ (> 1) times as high as by an NSD, i.e., £½. Publisher O not only was involved

in developing the old packaged software, but also has experience in dealing with consumers.

Therefore, it has the highest probability of winning. Speci¯cally, we assume that publisher O's

probability of winning is O (> 1) times as high as an OSD, i.e., O£½. Since all SDs of B face the

same entry and labor costs, if it is worth it for an NSD to enter, it is also worth it for publisher

O and all OSDs.53 The reverse is not true, however. For ease of exposition, let us now suppose

KB ¸ K¤; i.e., publisher O and all OSDs do enter.54 Then, since the sum of all probabilities

must be equal to one, we obtain

½ = 1=[KA +KB + (£¡ 1)K¤ + (O ¡ 1)£]: (11)

In what follows we analyze the role of learning-by-doing by focusing on £.55 From (11), we

easily obtain

52Network externality is an important feature of software. See Shy and Thisse (1999) for an interesting
analysis of software competition and protection in the presence of network externality.
53The OSDs and publisher O may save part (if not all) of the ¯xed cost f if the hardware associated

with this cost can be used in the design of the new packaged software. Allowing this possibility will
reinforce all the results obtained in this section.
54If only some of the OSDs enter, then the expression of (11) and the subsequent analysis can be

straightforwardly adjusted, leaving the results unchanged.
55The other variable O also captures learning-by-doing, but its e®ect is simpler than that of £. We

will discuss this later.

23

@½=@£ < 0; but @(£½)=@£ > 0:

That is, stronger learning-by-doing lowers the probability of winning by each new entrant but

raises the probability of winning by publisher O and each OSD. This will have important impli-

cations for the pattern of trade, which we analyze below.

Assuming markets A and B are segmented (as is common in the literature), if an SD wins

the software development race at the second stage, then at the third stage it sells the software

to market A at price pA and to market B at price pB. Thus, the expected pro¯t (excluding entry

cost f) for an SD from A is

¼A(pA; pB; xA;wA; ½; ¹A; ¹B) ´ ½(QApA +QBpB)¡wAxA; (12)

where Qi ´ Q(pi; q(xA); ¹i); i = A;B; is the demand for the legitimate software in market i.

Given wA, the SD chooses (pA; pB; xA) to maximize this expected pro¯t. Note that once ½ is

given, ¼A does not depend on the number of entrants in either country. However, the number

of entrants does a®ect the value of ½, as shown by (11).

In B, the expected pro¯t for an NSD, denoted ¼BN(pA; pB; xB;wB; ½; ¹A; ¹B); can be ob-

tained similarly to (12), with wA replaced by wB and xA by xB. The expected pro¯t for each

OSD, denoted ¼BO, is the same as ¼BN except ½ is replaced by £½. The expected pro¯t for

publisher O, denoted ¼BP , is the same as ¼BN except ½ is replaced by O£½. Given wB, each

SD in B chooses (pA; pB; xB) to maximize its expected pro¯t.

Following the procedure of analyzing packaged software under autarky, we can also examine

the equilibrium entry for any given (¹A; ¹B) when trade is open: However, in the rest of this

section we focus on a speci¯c case where learning-by-doing is su±ciently strong. We will show

that for su±ciently large £, there is no SD from A entering the software development. To prove

this result, let us ¯rst examine the optimal decision of an SD from A. Maximizing the expected

pro¯t (12) gives the Kuhn-Tucker ¯rst-order conditions:

24

@¼A=@xA = ½(QAq q
0pA +QBq q0pB)¡wA · 0 and (@¼A=@xA)xA = 0;

@¼A=@pA = ½(QA +QAp p
A) · 0 and (@¼A=@pA)pA = 0;

@¼A=@pB = ½(QB +QBp p
B) · 0 and (@¼A=@pB)pB = 0:

(13)

Since it is never optimal to set either pA or pB equal to zero, the second and third conditions

of (13) are equalities, which de¯ne the optimal pA(xA; ¹A; ¹B) and pB(xA; ¹A; ¹B). Substituting

these two functions into the ¯rst condition of (13), we then observe that the resulting (QAq q
0pA+

QBq q
0pB) is independent of ½. Therefore, for su±ciently strong learning-by-doing, which implies

a su±ciently small ½, @¼A=@xA < 0; and so xA = 0: As a result, for su±ciently large £, the

expected pro¯t is negative, ¼A ¡ f < 0. No SD from A will enter the race.

However, in the absence of learning-by-doing (£ = £p = 1), it is easily seen that at least

some SDs from country A will enter. This is because now all SDs (from A or B) are facing the

same probability of winning (1=K) but the winner gets two markets. Hence, for the same K,

an SD of A now in trade gets a higher expected pro¯t than that obtained by an SD in B under

autarky. Since the SDs of country B enter under autarky, these SDs of A have more incentive

to enter under free trade.

The above simple analysis provides the intuition for the following result: when there is very

weak learning-by-doing, some SDs from A enter the software development race, but when there

is su±ciently strong learning-by-doing, no SDs from A will enter. Proposition 4 below goes

further to show that there exists a threshold of learning-by-doing that determines whether any

SD from country A will enter the race.

Proposition 4: Suppose ¹A < ¹0 · ¹B. (i) There exists £A > 1 such that no SD of country
A will enter the packaged software development i® £ > £A: (ii) When £ > £A; only country

B develops and therefore exports packaged software, and only country A exports customized

software.

Proof: See the Appendix.

This proposition predicts the pattern of specialization and trade in software development

in the case of strong learning-by-doing. The intuition is simple. Because of learning-by-doing,

publisher O and the OSDs in B can maintain their comparative advantages over the new entrants

25

from A. When these comparative advantages are su±ciently strong, the chance for the new

entrants to win the software development is so small that it is not worth it to them to pay the

¯xed entry fee.56 As a result, B is the only country that will develop and thus export packaged

software.57

Since the two countries di®er only in their respective copyright protection, the above pattern

of trade must stem from such a di®erence.58 To appreciate the importance of cross-country

di®erences in copyright protection, let us digress for a moment by supposing ¹A = ¹B. First,

suppose ¹A = ¹B ¸ ¹0. Then, under autarky, there are equal numbers (K
¤) of SDs entering

in each country to develop the old packaged software, and eventually there are two publishers,

one in each country. When trade is open, the two publishers de¯nitely enter the new packaged

software development race, because they have equal probability to win, this probability is higher

than that of any other SD, and they face the same labor costs in their countries.59 Because of

the symmetry, if it is worthwhile for an OSD in A to enter, it is also worthwhile for an OSD in B

to enter. The same logic applies to the NSDs. Thus, the probability that the winner is from A

is equal to the probability that it is from B. Consequently, which country develops and exports

the new packaged software is completely indeterminate. Second, suppose ¹A = ¹B < ¹0: Then

there is no SD entering the packaged software development in either country under autarky.

However, when countries are open for trade, since the potential publisher faces two markets,

some SDs in both countries may enter the race. Again, in this case, the probability that the

winner is from country A (B) is equal to 1
2 .

56We expect that network externalities can also play a similar role as learning-by-doing. With network
externalities, publisher O has advantages over other SDs since the publisher enjoys a larger customer
group, ceteris paribus.
57Publisher O continues to produce and now starts to export the old packaged software if demand still

exists.
58Feenstra et al. (1999) examine empirically the implications of di®erences in business organization

(i.e., vertical integration in Japan and Korea vs. independent ¯rms in Taiwan) for exports. In the present
paper, we go one step further and show that a di®erence in legal institutions between countries leads to
a di®erence in business organization, which shapes the pattern of international trade.
59As for trade in the old packaged software, the trade pattern depends on the nature of the software. If

A's software and B's software are su±ciently di®erent that both of them can be protected under the same
copyright law, then A will export its packaged software to B and B will export its packaged software to
A. Otherwise, country A's (B's) copyright law will protect its own software by banning sales of country
B's (A's) software. In this latter case, no trade occurs.

26

In summary, if the countries have the same copyright protection, although they may still

have trade in packaged software, the pattern of trade is indeterminate. In contrast, Proposition

4 says that when ¹A < ¹0 · ¹B and learning-by-doing is su±ciently strong, the pattern of trade
is clearly determined.60

Turning to customized software, we realize that it is simpler to assume away learning-by-

doing. However, it would not be di±cult to see later that including learning-by-doing will only

reenforce our result. If all ¯rms choose to have in-house development under free trade, the

opportunity for trade does not a®ect the customized software development at all. If, however, it

is optimal to rely on a contract for delivery of customized software, then they will give contracts

to the programmers in the country that has the lower wage rate. Because of the demand for

programmers by the SDs in B, the wage rate in B is not lower than that in A. Hence, it is

possible that the ¯rms in B o®er contracts to programmers in A, resulting in a customized

software export from A to B.

Let us examine whether the wage rate in B is strictly higher than that in A. For su±ciently

strong learning-by-doing (£ > £A), there is no new SD (either from A or B) entering the race.

Note that in this case, the OSDs face no more competition in software development than under

autarky but have one more market in which to sell their product. This seems to suggest that

the incentive for them to enter the race is higher when there is trade than under autarky and

the total labor demand in B is also larger when there is trade than under autarky. However, this

is not necessarily the consequence. Let us look at the entry issue ¯rst. Suppose that publisher

O and all OSDs enter. Then ½ = 1=[£(K¤ ¡ 1 +O)] and so the probability of winning by each
OSD is 1=(K¤¡1+O) and that by publisher O is O=(K¤¡1+O): Note that the probability of
winning by each OSD is smaller than that under autarky, which is 1=K¤: Moreover, if publisher

O's learning-by-doing (namely O) is su±ciently large, the winning probability of each OSD

is close to zero. In this extreme case, only publisher O will enter the race, and so the labor

demand for the packaged software development need not be higher when there is trade than

60This explanation for the pattern of trade is in line with the observation of Arora et al. (1999). Based
on their study of the Indian software industry, Arora et al. conjecture that both the weak intellectual
property rights and lack of experience are important culprits for the failure of the Indian ¯rms to develop
successful packaged software.

27

under autarky.

Finally, let us view the consequences of trade in two sequential steps, by ¯rst allowing trade

in packaged software only and then allowing trade in customized software also. Since there is

no entry into the packaged software development in A but there is in B, if trade in customized

software is ruled out, then the wage rate in A is equal to the minimum (w0), but that in B is

not lower than this level. According to Corollary 1, the B ¯rms are more likely to adopt vertical

integration than the A ¯rms. Nonetheless, the B ¯rms will o®er contracts to A's programmers

if and only if (i) the wage rate in B is higher than that in A and (ii) it is optimal for the B

¯rms to adopt contracts. A direct implication of this is that in equilibrium the wage rate in A

cannot be greater than that in B. If the B ¯rms do make contract o®ers to A's programmers,

demand for programmers in B decreases and that in A increases, leading to a possible wage rate

drop in B and a rise in A. Thus, the wage gap may be reduced. Since with trade the wage rate

in A cannot be lower than that under autarky, by Corollary 1 we immediately know that trade

may reduce the cases where contracts are adopted for customized software development in A.

This can occur only if A exports the \contracted" customized software. The above analysis is

summarized below.

Corollary 2: Suppose £ > £A. (i) In equilibrium, w
B ¸ wA. Trade reduces the gap between

the computer programmers' wage rate in B and that in A. (ii) Trade reduces the cases where

contracts are adopted for customized software development in country A.

5. Conclusion

We have developed a model to analyze software development and trade. We emphasize the

e®ects of contract enforcement on the organizational mode of customized software development

and the e®ects of copyright protection on the pattern of trade for both packaged software and

customized software.

Software has several distinguishing features compared with common commodities like auto-

mobiles and therefore deserves special attention. In this paper, we have emphasized the product

speci¯city of customized software, which results in holdups, and the low (or zero) marginal cost

28

of reproducing packaged software, which leads to piracy. Because of these features and the

resulting problems, legal environments are very crucial in shaping this industry's development

and trade.

As an extension to check the robustness of the results obtained in this paper and to derive

new results, we could introduce some other features of software into the present model. One

example is the network externality in the packaged software. When using the software, a user's

utility, v(i), depends on the number of people who are also using it (legally or illegally). This

externality will a®ect the publisher's pricing strategy in an interesting way. Inevitably, the

investment and entry decision will also be a®ected. However, it is conceivable that the results

obtained in this paper about the packaged software are unlikely to be altered qualitatively.

Another direction of an extension is to explore more closely the copyright spillover e®ect

from packaged software to customized software. In the present model, the cross-product e®ect is

realized through changes in the wage rate. We could also consider the case when productivity in

customized software development may be enhanced by the existence and the quality of packaged

software.

References

Anderson, J.E. and L. Young, 2000, \Trade and contract enforcement," Mimeo, Boston College.

Arora, A. and J. Asundi, 1999, \Quality certi¯cation and the economics of contract software

development: A study of the Indian software service companies," NBERWorking Paper 7260.

Arora, A., V.S. Arunachalam, and J. Asundi, 1999, \The Indian software service industry,"

Mimeo, The H. John Heinz III School of Public Policy and Management.

Baba, Y., S. Takai, and Y. Mizuta, 1995, \The Japanese software industry: The `hub structure'

approach," Research Policy, 24, 473{486.

Bakos, Y., R. Brynjolfsson, and D. Lichtman, 1999, \Shared information goods," Journal of

Law and Economics, 42(1), 117{155.

29

Besen, S.M. and L.J. Raskind, 1991, \An introduction to the law and economics of intellectual

property," Journal of Economic Perspectives, 5(1), 3{27.

Bolton, P. and M.D. Whinston, 1993, \Incomplete contracts, vertical integration, and supply

assurance," Review of Economics Studies, 60, 121{148.

BSA, 1998, \The contribution of the packaged software industry to the European economies,"

A study conducted by PricewaterhouseCoopers, commissioned by the Business Software Al-

liance (http://www.bsa.org).

BSA, 1999a, \1998 Global Software Piracy Report," A study conducted by International Plan-

ning and Research Corporation for the Business Software Alliance (http://www.bsa.org).

BSA, 1999b, \Forecasting a robust future: An economic study of the U.S. software industry,"

A study conducted by PricewaterhouseCoopers, commissioned by the Business Software Al-

liance (http://www.bsa.org).

Che, Y.-K. and D. Hausch, 1999, \Cooperative investments and the value of contracting,"

American Economic Review, 89(1), 125{147.

Chen, Y. and I. Png, 2000, \Software pricing and copyright: Enforcement against end-users,"

Mimeo, National University of Singapore.

Correa, C.M., 1996, \Strategies for software exports from developing countries," World Devel-

opment, 24(1), 171{182.

Dixit, A. and G. Grossman, 1986, \Targeted export promotion with several oligopolistic indus-

tries," Journal of International Economics, 21, 233{249.

Feenstra, R., T.-H. Yang, and G. Hamilton, 1999, \Business groups and product variety in trade:

Evidence from South Korea, Taiwan and Japan," Journal of International Economics, 48,

71{100.

Fortune, 1994, \Competitiveness: How U.S. companies stack up now," April 18.

30

Gilman, J., 1992, \When the SPA comes, a-knockin" Computerworld, (December 7, 1992), 108.

Grossman, G. and E. Helpman, 1999, \Incomplete contracts and industrial organization," Mimeo,

Princeton University.

Helpman, E. and P. Krugman, 1985, Market Structure and Foreign Trade, The MIT Press

(Cambridge, Mass).

Klein, B., R. Crawford, and A. Alchian, 1978, \Vertical integration, appropriable rents, and the

competitive contracting process," Journal of Law and Economics, 21(2), 297{326.

McLaren, J., 1998, \`Globalization' and vertical structure," American Economic Review (forth-

coming).

Png, I. and Z. Tao, 2000, \Installment payments in contracts for systems development," Mimeo,

National University of Singapore.

Reinganum, J.F., 1989, \The timing of innovation: Research, development and di®usion," Chap-

ter 14 in R. Schmalensee and R.D Willig (eds.), Handbook of Industrial Economics, vol. 1,

North-Holland (Amsterdam), 849{908.

Shy, O. and J.-F. Thisse, 1999, \A strategic approach to software protection," Journal of Eco-

nomics and Management Strategy, 8(2), 163{190.

Siwek, S.E. and H.W. Furchtgott-Roth, 1993, International Trade in Computer Software, Quo-

rum Books (London).

Stuckey, J. and D. White, 1993, \When and when not to vertically integrate," Sloan Management

Review, Spring, 71{83.

Tirole, J., 1999, \Incomplete contracts: Where do we stand?" Econometrica, 67(4), 741{781.

Torrisi, S., 1998, Industrial Organisation and Innovation: An International Study of the Software

Industry, Edward Elgar (Cheltenham, UK).

31

Wang, E.T., T. Barron, and A. Seidmann, 1997, \Contracting structures for custom software

development: The impacts of informational rents and uncertainty on internal development

and outsourcing," Management Science, 43(12), 1726{1744.

Whang, S., 1992, \Contracting for software development,"Management Science, 38(3), 307{324.

Williamson, O., 1971, \The vertical integration of production: Market failure considerations,"

American Economic Review, LXI(2), 112{123.

Zhang, J.X. and Y. Wang, 1995, The Emerging Market of China's Computer Industry, Quorum

Books (London).

Zhang, J.Z. and T. Zhu, 2000, \Veri¯ability, incomplete contracts and dispute resolution," Eu-

ropean Journal of Law and Economics, 9(3), 281{290.

32

Figure 1:

Figure 2:

33

Figure 3:

34

